COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

WEIGHT FUNCTIONS ON THE KNESER GRAPH AND THE SOLUTION OF AN INTERSECTION PROBLEM OF SALI

PETER FRANKL and NORIHIDE TOKUSHIGE

Received June 7, 1990

Let X, Y be finite sets and suppose that $\mathcal F$ is a collection of pairs of sets $(F,G),\ F\subset X,\ G\subset Y$ satisfying $|F\cap F'|\geq s,\ |G\cap G'|\geq t$ and $|F\cap F'|+|G\cap G'|\geq s+t+1$ for all $(F,G),\ (F',G')\in \mathcal F$. Extending a result of Sali, we determine the maximum of $\mathcal F$.

1. Introduction

Let X be a finite set and k be an integer. We denote by $\binom{X}{k}$ all k-element subsets of X. Let us construct the Kneser graph G on $\binom{X}{k}$ as follows. The vertex set of G is $\binom{X}{k}$ and two vertices are adjacent iff the corresponding two k-element sets are disjoint. Using a weight function on the Kneser graph, we prove some results on intersecting families. The main tool is the following.

Proposition 1. Let $X = \{1, 2, ..., m\}$ and G = (V, E) be the Kneser graph on $\binom{X}{k}$. Let further w_0 be a fixed constant. Let $w: V \to \mathbf{R}$ be a weight function with the following properties.

- (P1) If $uv \in E$ and $w(u) = w_0$ then $w(v) \le w_0$.
- (P2) If $uv \in E$ and $w(u) = w_0 + {x \choose n-l-1}$ for some x with $n-l-1 \le x \le n-1$, then $w(v) \le w_0 {x \choose l-1}$.

Further, suppose that $n \ge 2l$ and $l/n \ge k/m$. Then $\sum_{v \in V} w(v) \le |V| w_0$ holds.

As the first application of this proposition, we give a combinatorial proof of the following theorem, which is a special case of a result in [3].

Theorem 1. Let X, Y be finite sets with $m = |X| \ge 2k$, $n = |Y| \ge 2l$. Suppose that $\mathcal{F} \subset {X \choose k} \times {Y \choose l} = \{(F,G) : F \in {X \choose k}, G \in {Y \choose l}\}$ is an intersecting family on ${X \cup Y \choose k+l}$.

Then it follows that

$$\frac{|\mathcal{F}|}{\binom{m}{k}\binom{n}{l}} \le \max\left\{\frac{k}{m}, \frac{l}{n}\right\}.$$

Next we extend a result of Sali. To state his result, we need some definitions. Let X and Y be finite sets. A family $\mathcal{F} \subset 2^X \times 2^Y$ is called (s,t,u)-intersecting if for every (F,G), $(F',G') \in \mathcal{F}$, $|F \cap F'| \geq s$, $|G \cap G'| \geq t$ and $|F \cap F'| + |G \cap G'| \geq u$. We define an s-intersecting family K(X,s) on an m-element set X as the following.

$$K(X,s) = \begin{cases} \bigcup_{i=k}^{m} {X \choose i} & \text{if } m+s=2k \\ \left\{ \bigcup_{i=k+1}^{m} {X \choose i} \right\} \cup {X-\{x\} \choose k} & \text{if } m+s=2k+1 \text{ and } x \in X. \end{cases}$$

Let us define K(m,s) as the maximum size of s-intersecting families on an m-element set. By the Katona Theorem, it follows that K(m,s) = |K(X,s)|. Sali [13] proved the following.

Theorem 2. Let X, Y be finite sets with |X| = m, |Y| = n. Suppose that $\mathcal{F} \subset 2^X \times 2^Y$ is (1,1,3)-intersecting. Then the following hold.

(1) If m, n are even,

$$|\mathcal{F}| \leq \binom{m-1}{m/2} K(n,3) + K(m,2)K(n,1).$$

(2) If m is odd and n is even,

$$|\mathcal{F}| \leq \binom{m}{(m+1)/2} K(n,2) + K(m,3)K(n,1).$$

(3) If m, n are odd,

$$|\mathcal{F}| \leq \binom{m}{(m+1)/2} \{K(n,2) + \frac{1}{n+1} \binom{n-1}{(n-1)/2} \} + K(m,3)K(n,1).$$

The bounds are sharp in the first two cases.

The bound is not sharp in the last case. We extend the above result and give the sharp bound.

Theorem 3. Let X, Y be finite sets with |X| = m and |Y| = n. Suppose that $\mathcal{F} \subset 2^X \times 2^Y$ is (s,t,s+t+1)-intersecting. Then the following hold.

(1) If m+s, n+t are odd,

$$|\mathcal{F}| \leq \binom{m-1}{(m+s-1)/2} K(n,t+2) + K(m,s+1)K(n,t).$$

(2) If m+s is even and n+t is odd,

$$|\mathcal{F}| \leq \binom{m}{(m+s)/2} K(n,t+1) + K(m,s+2) K(n,t).$$

(3) If m+s, n+t are even and $m/s \le n/t$,

$$|\mathcal{F}| \le {m \choose (m+s)/2} K(n,t+1) + K(m,s+2)K(n,t).$$

Example 1. The upper bounds in Theorem 3 are best possible. One of the extremal configurations is the following.

(1) If m+s and n+t are odd, fix an element $x \in X$ and define

$$\mathcal{F} = \left\{ \begin{pmatrix} X - \{x\} \\ (m+s-1)/2 \end{pmatrix} \times K(Y,t+2) \right\} \cup \left\{ K(X,s+1) \times K(Y,t) \right\}.$$

(2) If m+s is even define

$$\mathcal{F} = \{ \begin{pmatrix} X \\ (m+s)/2 \end{pmatrix} \times K(Y,t+1) \} \cup \{ K(X,s+2) \times K(Y,t) \}.$$

2. Tools of proofs

One of the most useful results in extremal set theory is the Kruskal–Katona Theorem. Here we need it in the following version (cf. [11]). For a family \mathcal{F} and an integer $l \geq 0$ define $\sigma_l(\mathcal{F}) = \{G: |G| = l, \exists F \in \mathcal{F}, G \subset F\}$.

Theorem 5. (Kruskal-Katona Theorem [9,6]) Suppose that Y is an n-element set, $n \geq 2l$ and $\mathcal{H} \subset \binom{Y}{n-l}$ is a family of (n-l)-sets. Suppose further that $|\mathcal{H}| = \binom{n-1}{n-l} + \binom{x}{n-l-1}$ for some real number $x, n-l-1 \leq x \leq n-1$. Then $|\sigma_l(\mathcal{H})| \geq \binom{n-1}{l} + \binom{x}{l-1}$ holds.

Suppose that $\mathcal{A} \subset {Y \choose l}$ and $\mathcal{B} \subset {Y \choose l}$ are cross-intersecting, that is $A \cap B \neq \emptyset$ holds for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Then clearly $\mathcal{B} \subset {Y \choose l} - \sigma_l(\mathcal{A}^c)$ holds, where $\mathcal{A}^c := \{Y - A : A \in \mathcal{A}\}$. Thus, for fixed $|\mathcal{A}|$ we can give an upper bound of $|\mathcal{B}|$ using the above theorem and this idea will be used in the proof of Theorem 1.

Let Δ denote the symmetric difference, that is $F\Delta G = (F-G) \cup (G-F)$. For a family $\mathcal{F} \subset 2^X$ and a positive integer t define $\partial_t(\mathcal{F}) = \{G \subset X : \exists F \in \mathcal{F}, |F\Delta G| \le t\}$. Given $|\mathcal{F}|$, what is min $|\partial_t(\mathcal{F})|$? This problem was solved by Harper [5]. We need the following version of his result. (This follows from Harper's theorem and Lovász version of the Kruskal-Katona Theorem. cf. [12], [1]:pp.128-129.)

Theorem 5. (Numerical Harper Theorem) Suppose that $\mathcal{F} \subset 2^X$, $|\mathcal{F}| = {m \choose m} + {m \choose m-1} + \cdots + {m \choose a+1} + {m \choose a} + {x \choose a-1}$ where x, is a real number, $a-1 \le x \le m-1$. Then for $1 \le t \le a$ one has $|\partial_t(\mathcal{F})| \ge {m \choose m} + \cdots + {m \choose a-t+1} + {m-1 \choose a-t} + {x \choose a-t-1}$.

Suppose that $\mathcal{A} \subset 2^X$ and $\mathcal{B} \subset 2^X$ are cross t-intersecting, that is $|A \cap B| \ge t$ holds for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Then it follows that $\mathcal{B} \subset 2^X - \partial_{t-1}(\mathcal{A}^c)$. Thus, for fixed $|\mathcal{A}|$ we can give an upper bound of $|\mathcal{B}|$ again and this will be used in the proof of Theorem 3.

Finally we use the following slight extension of a lemma of Sali [13].

Lemma 1. Let $\mathcal{F} \subset 2^X$ be an s-intersecting family on the m-element set X, and ε be an integer with $0 \le \varepsilon \le s$. Suppose that F_1, F_2, \ldots, F_h are the l-element sets in \mathcal{F} . Then there exist distinct sets $G_1, G_2, \ldots, G_h \subset X$ such that $|G_j| = m - (l - s + \varepsilon)$ and $|F_j \cap G_j| = s - \varepsilon$ hold, $1 \le j \le h$.

Proof. Let $\mathcal{F}_l = \{F_1, \dots, F_h\}$. In view of the Intersecting Kruskal–Katona Theorem [7],

$$|\sigma_{l-s+\varepsilon}(\mathcal{P})| \geq \left\{ \binom{2l-s}{l-s+\varepsilon} \middle/ \binom{2l-s}{l} \right\} |\mathcal{P}| \geq |\mathcal{P}|$$

holds for every $\mathcal{P} \subset \mathcal{F}_l$. This shows that \mathcal{F}_l satisfies the Hall condition. So, there exist distinct sets H_1, \ldots, H_h satisfying $|H_j| = l - s + \varepsilon$, $H_j \subset F_j$, $1 \leq j \leq h$. Define $G_j := X - H_j$, then clearly $|F_j \cap G_j| = s - \varepsilon$, the result is proved.

3. Proofs

Proof of Proposition 1.

Claim 1. Suppose that $uv \in E$ and $w(u) \ge w(v)$. Then,

$$kw(u) + (m-k)w(v) \leq mw_0$$
.

Proof. By (P1) this inequality clearly holds if $w(u) = w_0$. So suppose that $w(u) = w_0 + \binom{x}{n-l-1}$, $n-l-1 \le x \le n-1$. Then by (P2) we have $w(v) \le w_0 - \binom{x}{l-1}$. To prove our claim, we have to show that $k\binom{x}{n-l-1} \le (m-k)\binom{x}{l-1}$, or equivalently,

$$k(x-l+1)\cdots(x-n+l+2)\leq (m-k)(n-l-1)\cdots l.$$

Since the LHS of the inequality is increasing with x, it suffices to show when x = n-1, that is, $k(n-l) \le (m-k)l$. This is equivalent to $l/n \ge k/m$, which completes the proof of Claim 1.

Let H be an induced subgraph of G, where

$$V(H) = \{h_1 := \{1, 2, \dots, k\}, h_2 := \{2, 3, \dots, k+1\}, \dots, h_m := \{m, 1, 2, \dots, k-1\}\}.$$

Claim 2. $\sum_{h \in V(H)} w(h) \leq |H| w_0$.

Proof. Consider $\max_{hh'\in E(H)}\{w(h)+w(h')\}$. By symmetry we may assume that this maximum is attained for the edge h_1h_t with $w(h_1) \ge w(h_t)$. Note that $h_1h_j \in E(H)$ for $k+1 \le j \le m-k+1$ and $h_jh_{m-k+j} \in E(H)$ for $2 \le j \le k$. Then we have

$$\begin{split} \sum_{h \in V(H)} w(h) &= \{w(h_1) + \sum_{j=k+1}^{m-k+1} w(h_j)\} + \sum_{j=2}^k \{w(h_j) + w(h_{m-k+j})\} \\ &\leq w(h_1) + (m-2k+1)w(h_t) + (k-1)\{w(h_1) + w(h_t)\} \\ &= kw(h_1) + (m-k)w(h_t) \\ &\leq mw_0. \quad \text{(by Claim 1)} \end{split}$$

This completes the proof of Claim 2.

Since the automorphism group of the Kneser graph is transitive on its edges, by an averaging argument(cf. [8]) and Claim 2, we have

$$\sum_{v \in V} w(v) \le |V| w_0,$$

which completes the proof of Proposition 1.

Proof of Theorem 1. We assume that $l/n \ge k/m$. Let $\mathcal{K} = (V, E)$ be the Kneser graph on $\binom{X}{k}$. We define a weight function $w: V \to \mathbf{N}$ by $w(v) := \#\{G \in \binom{Y}{l}: (v,G) \in \mathcal{F}\}$ for $v \in V$. Let $w_0 := \binom{n-1}{l-1}$. By the version of the Kruskal-Katona Theorem stated in the preceding section, w satisfies the properties (P1) and (P2) in Proposition 1. Hence we have

$$|\mathcal{F}| = \sum_{v \in V} w(v) \le |V| w_0 = {m \choose k} {n-1 \choose l-1}.$$

Proof of Theorem 3. Define $\mathcal{F}_X := \{F \subset X : \exists G \subset Y, (F,G) \in \mathcal{F}\}$ and $k_i := K(n,i)$. Consider a weight function $w : \mathcal{F}_X \to \mathbf{R}$ satisfying the following conditions.

- (Q1) For all $F \in \mathcal{F}_X$, $w(F) \leq k_t$.
- (Q2) If $|F \cap H| = s$ for $F, H \in \mathcal{F}_X$ then $w(F) + w(H) \le k_t + k_{t+2}$.

Moreover, if n+t=2b then we assume that w satisfies the following.

- (Q3) If $|F \cap H| = s$ for $F, H \in \mathcal{F}_X$ and $w(F) = k_{t+1}$, then $w(H) \le k_{t+1}$.
- (Q4) If $|F \cap H| = s$ for $F, H \in \mathcal{F}_X$ and $w(F) = k_{t+1} + {x \choose b-1} = k_{t+1} + {x \choose n-(b-t)-1}$ for $b-1 \le x \le n-1$, then $w(H) \le k_{t+1} {x \choose (b-t)-1}$.

Note that \mathcal{F}_x satisfies (Q1)–(Q4) with the weight function $w(F)=\#\{G:(F,G)\in\mathcal{F}\}$, and we have $|\mathcal{F}|=\sum_{F\in\mathcal{F}_X}w(F)$. Indeed, (Q1) holds because of $|G_1\cap G_2|\geq t$ for all $(F,G_1),\ (F,G_2)\in\mathcal{F}$. (Q2) was proved by Sali [13], it can be proved also using the Numerical Harper Th., cf. [4]. (Q3) and (Q4) follow from the Numerical Harper Theorem applied to the families $\mathcal{A}=\{G:(F,G)\in\mathcal{F}\}$ and $\mathcal{B}=\{G:(H,G)\in\mathcal{F}\}$. Therefore, to conclude the proof it is sufficient to prove the following.

Proposition 2. Let $\mathcal{F}_X \subset 2^X$ be an s-intersecting family and let $w: \mathcal{F}_X \to \mathbf{R}$ be a weight function satisfying (Q1)-(Q4). Then the following hold.

(1) If m+s, n+t are odd,

$$\sum_{F\in \mathcal{F}_X} w(F) \leq \binom{m-1}{(m+s-1)/2} K(n,t+2) + K(m,s+1)K(n,t).$$

(2) If m+s is even and n+t is odd,

$$\sum_{F \in \mathcal{F}_X} w(F) \le \binom{m}{(m+s)/2} K(n,t+1) + K(m,s+2)K(n,t).$$

(3) If m+s, n+t are even and $m/s \le n/t$,

$$\sum_{F \in \mathcal{F}_X} w(F) \le \binom{m}{(m+s)/2} K(n,t+1) + K(m,s+2)K(n,t).$$

Proof. Let $\mathcal{F}_l := \mathcal{F}_X \cap {X \choose l}$ and $h_l := |\mathcal{F}_l|$. We change \mathcal{F}_X and w according to the following algorithm. Note that in this process, the total weight does not decrease and conditions (Q1)–(Q4) are satisfied.

Algorithm 1.

- (i) Define $l := \min\{i : h_i > 0\}$. If $l \le \lfloor (m+s-1)/2 \rfloor$ then go to (ii), otherwise end.
- (ii) Let $h = h_l$ and $\mathcal{F}_l = \{F_1, \dots, F_h\}$. By Lemma 1, there exist $G_1, \dots, G_h \in \binom{X}{m-l+s}$ such that $|F_j \cap G_j| = s$ for $1 \le j \le h$. Define

$$\mathcal{F}_X := \mathcal{F}_X \cup \{G_1, \dots, G_h\},$$

 $w(F_j) := k_{t+2} \quad \text{for} \quad 1 \le j \le h,$
 $w(G_j) := k_t \quad \text{for} \quad 1 \le j \le h.$

If $l \leq \lfloor (m+s)/2 \rfloor - 1$ then go to (iii), otherwise end.

(iii) Let $\mathcal{A} := \{ F \in \binom{X}{m - (l - s + 1)} : F \notin \mathcal{F}_X \}$. By Lemma 1, $|\mathcal{A}| \ge h_l$ holds. Define

$$\mathcal{F}_X := (\mathcal{F}_X - \mathcal{F}_l) \cup \mathcal{A},$$

 $w(A) := k_{t+2} \text{ for } A \in \mathcal{A}$

and go to (i).

After this process, we obtain that

$$\bigcup_{i=l}^m \binom{X}{i} \subset \mathcal{F}_X \subset K(X,s),$$

where $l = \lfloor (m+s)/2 \rfloor + 1$. If m+s=2a+1 then $w(F) = k_{t+2}$ for $F \in \mathcal{F}_a$. Moreover, note that \mathcal{F}_a remains unchanged during this process in this case. Since it is sintersecting, $\mathcal{F}_a^c = \{X - F : F \in \mathcal{F}_a\}$ must be intersecting. By the Erdős–Ko–Rado Theorem [2], $|\mathcal{F}_a| \leq {m-1 \choose m-a-1} = {m-1 \choose a}$ follows.

Case <u>1</u>. m+s=2a+1 and n+t=2b+1.

$$\sum_{F \in \mathcal{F}_X} w(F) \le \binom{m-1}{a} k_{t+2} + \sum_{j=a+1}^m \binom{m}{j} k_t$$
$$= \binom{m-1}{a} K(n,t+2) + K(m,s+1)K(n,t).$$

Case 2. m+s=2a and n+t=2b+1.

$$\begin{split} \sum_{F \in \mathcal{F}_X} w(F) &\leq \sum_{F \in \mathcal{F}_a} w(F) + \sum_{j=a+1}^m \binom{m}{j} k_t \\ &\leq \binom{m}{a} \frac{K(n,t) + K(n,t+2)}{2} + K(m,s+2)K(n,t) \\ &= \binom{m}{a} K(n,t+1) + K(m,s+2)K(n,t). \end{split}$$

Case 3. m+s=2a, n+t=2b and $m/s \le n/t$.

First, let us consider w on $V := {X \choose a}$. Define k := a, $w_0 := k_{t+1}$, and l := b - t. Then (Q3) and (Q4) imply (P1) and (P2). Note that $m/s \le n/t$ implies $l/n \le k/m$. Applying Proposition 1, it follows that

$$\sum_{F\in V}w(F)\leq \binom{m}{a}k_{t+1}.$$

Therefore we have

$$\sum_{F \in \mathcal{F}_X} w(F) \le \sum_{F \in \mathcal{F}_a} w(F) + \sum_{j=a+1}^m \binom{m}{j} k_t$$
$$\le \binom{m}{a} K(n, t+1) + K(m, s+2) K(n, t).$$

This completes the proof of Proposition 2 and so the proof of Theorem 3.

References

- [1] B. Bollobás: Combinatorics, Cambridge Univ. Press, 1986.
- [2] P. ERDÖS, C. Ko, R. RADO: Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961) 313-320.

- [3] P. Frankl An Erdős-Ko-Rado theorem for direct products, European J. of Combinatorics, to appear.
- [4] P. FRANKL: On cross-intersecting families, Discrete Math., 108, (1992) 291-295.
- [5] L. H. HARPER: Optimal numberings and isoperimetric problems on graphs, J. Comb. Theory 1 (1966) 385-393.
- [6] G. O. H. KATONA: A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, 1966 (Akadémiai Kiadó, 1968) 187–207.
- [7] G. O. H. KATONA: Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hung. 15 (1964) 329-337.
- [8] G. O. H. KATONA: Extremal problems for hypergraphs, in: "Combinatorics, Part II" (eds. M. Hall and J. H. van Lint) Math. Centre Tracts 56:13-42, Mathematisch Centre Amsterdam, 1974.
- [9] J. B. KRUSKAL: The number of simplices in a complex, in: *Math. Opt. Techniques* (Univ. of Calif. Press, 1963), 251–278.
- [10] L. Lovász: Problem 13.31, in: Combinatorial Problems and Exercises, North Holland, 1979.
- [11] M. MATSUMOTO, N. TOKUSHIGE: The exact bound in the Erdős-Ko-Rado theorem for cross-intersecting families. J. Comb. Theory A 22 (1989) 90-97.
- [12] M. MATSUMOTO, N. TOKUSHIGE: A generalization of the Katona theorem for cross t-intersecting families. Graphs and Combinatorics 5 (1989) 159-171.
- [13] A. Sali: Some intersection theorems. Combinatorica 12 (1992) 351-361.

Peter Frankl

C.N.R.S., University of Paris VI 2 Place Jussieu Paris 75 005, France

Norihide Tokushige

Department of Computer Science, Meiji Univ., 1-1-1 Higashimita, Tama-ku, Kawasaki, 214 Japan